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HyperStressPropagateNet: Novelties

Fig. 3: CNN-based deep learning architecture for classification of stressed 
and unstressed pixels.

Fig. 4: (a) Training and validation loss vs number of epochs; and (b) training 
and validation accuracy vs number of epochs.
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 It uses a convolutional neural network to classify the
reflectance spectra at individual pixels as either stressed or
unstressed to determine the temporal propagation of stress in
the plant using hyperspectral imagery.

 A very high correlation between the soil water content (SWC)
and the percentage of the plant under stress as computed by
HyperStressPropagateNet on a given day demonstrates its
efficacy.

 The algorithm has been used to illustrate the temporal
propagation of stress both qualitatively and quantitatively.

 HyperStressPropagateNet has been evaluated on a dataset of
image sequences of cotton plants captured in a high throughput
plant phenotyping platform.

 The algorithm may be generalized to any plant species to study
the effect of abiotic stresses on sustainable agriculture
practices.

Fig. 2: Spectral band difference based segmentation. 

Fig. 8: Illustration of qualitative and quantitative temporal propagation of 
stress using Plant A (DD1 group) and Plant B (DD2 group).

Fig. 6: Performance metrics for HyperStressPropagateNet: (a) 
confusion matrix; and (b) precision-recall curve.

 1D CNN is used to classify the reflectance spectra into two classes, i.e.,
stressed and unstressed.

 These convolutional layers learn from the representation learning
component.

 The goal of representation learning is to learn the different features in the
convolution layers and then use them in the subsequent dense layers for
the final classification.

 Two bands of specific wavelengths that have significant contrast in
intensity are first identified (a-b).

 They are enhanced by multiplying a constant factor (c-d) and finally
subtracted from each other to isolate the plant pixels, i.e., the foreground
(e).

 The enhanced foreground image is then binarized using Otsu's automatic
thresholding technique to generate a binary mask for the plant (f).

 The binary mask is used to segment the plant in all bands of a
hyperspectral cube for subsequent analysis.

 The image sequences used for algorithm development and
evaluation were obtained at the greenhouse of the University
of Nebraska-Lincoln (Lincoln, Nebraska, U.S.) using High
Throughput Plant Phenotyping Core Facilities (Scanalyzer 3D,
LemnaTec Gmbh, Aachen, Germany).

 Plants were randomly divided into two groups of 10
corresponding to the two experimental groups (i.e.,
Experiments 1 and 2).

 Each experimental group was further split into two groups of 5
plants and assigned to treatment groups (control and drought
stress).

 In Experiment 1, dry-down (DD1) was initiated 12 days after
the onset of plant imaging and lasted for 8 days.

 A week later, a similar dry-down (DD2) was initiated for the
second experimental group and lasted for 9 days.

Materials and Methods

Fig. 7: (a) SWC (%) for the control and the two dry-down groups (DD1, Plant A and 
DD2, Plant B); and (b) stress pixel (%) over days since DD1 for the same plants.

Fig. 5: Reflectance spectra generated at random pixels of a (a) controlled 
plant; and (b) stressed plant.

 The total number of epochs used during training is 30.

 From the two sets of graphs, it is evident that the validation loss and
accuracy closely follow the training loss and accuracy, respectively.

 The model converges, and validation accuracy reaches above 95% within
10 epochs.

Training and Classification

 A hyperspectral image can be represented by a three-dimensional
array of intensities, H(x,y,𝜆𝜆), where (x,y) represents the location of
a pixel and 𝜆𝜆 denotes the wavelength.

 It is, thus, often referred to as a hyperspectral cube.

 Intensity information at a specific location for all wavelengths can
be represented by a spectral reflectance curve.
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Fig. 1: (a) Hyperspectral cube; and (b) A sample spectral reflectance curve.

 Pixels classified as stressed and unstressed are shown in red and
green, respectively.

 The percentage of stressed pixels to the total plant pixels are shown
at the top-left corner of each image.

 The study shows a high correlation between the SWC and the
percentage of stress pixels in the plants.

Results
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