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Relationship between my research and 
bioinformatic breakthroughs

Advanced statistical 
models that connect 

genotype to the 
phenotype

G-to-P models

Slide courtesy of Dr. Matthew D. Murphy 

Genotypic data

https://tincture.io/tagged/dna-sequencing 

Phenotypic data

https://www.pioneer.com/us/products/soybeans.html
http://boort.com.au/gallery/drone-checking-corn-crop/

Dr. Matthew D. Murphy

Bioinformatic 
breakthroughs 

facilitate G-to-P 
analysis of more 
individuals and 

more traits



Bioinformatic breakthroughs facilitate analysis of 
more sophisticated phenotypes
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https://www.pioneer.com/us/products/soybeans.html

http://boort.com.au/gallery/drone-checking-corn-crop/

Lipka Lab growout from 2021 UIUC field season

Truong et al., Genetics (2015) Genetics

Fly drones Take images Measure phenotypes



Bioinformatic breakthroughs make it possible to see 
how G-to-P relationships change across lifespan
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Family of n = 1,741 rice RILs
• Trait = Reflectance ratio (NVDI)
• Obtained using multispectral sensors on a tractor 

Tanger et al., Scientific Reports (2017)



High quality bioinformatic data helped make 
exciting research possible in plants
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Clark et al. (2018)

NCRPIS (“Ames”) maize diversity panel: n = 2,815

Romay et al. (2013)

Miscanthus sinensis diversity panel: n = 538
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Assess the utility of 
genomic prediction 

across multiple 
environments

Simulated and real traits 
used to assess the 

performance of various 
statistical G-to-P models



AG2PI has put my lab’s research experience 
into a broader context 
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Clark et al. (2018)

NCRPIS (“Ames”) maize diversity panel: n = 2,815

Romay et al. (2013)

Miscanthus sinensis diversity panel: n = 538

Principal Coordinate 1

Pr
in

ci
pa

l C
oo

rd
in

at
e 

2

• Plant data have smaller sample sizes than comparable 
animal/livestock data

• Advancements in G-to-P modeling might have already been 
done in animals

• Advancing bioinformatic research has common problems and 
solutions in plants and animals



AGP2I Thinking Big: Advancing Genomics Research
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More genomes need to be available
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•More individuals need to be sequenced
•Overreliance on a single reference genome
•Reflective of commercial production varieties
•Wild progenitors need to be sequenced

•What this will facilitate
•Studying genetic diversity of relevant breeding 
material
•Studying structural variation
•Study history of genetic architecture 

Sequencing at both genomic and epigenomic levels are 
needed



Basic science needs to be translated to applications
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•Basic genomic research has advanced
•Better understanding of non-additive effects
•Better understanding of GxE
 

• Improving analytical tools can expediate applications
•Practical
•Usable
•Understandable to users in multiple disciplines



A cohesive agricultural genomics community is needed

11

•Support needed in the following areas
•Scientific
•Funding
•Human resources

•Benefits
•Scientists can focus on science
• Innovative scientific thinking is encouraged
•Latest approaches can be used
 



Generate high-resolution and more diverse  
-omics data are needed
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•Species agnostic

•Serve as reference data sets
•Decrease data collection costs

•Engaging scientists in industry ensures:
•Relevance
•Accessibility to diverse stakeholders

 



Advancing genomic research: 
Critical to fund, easy to achieve

13Tuggle et al., In Review

Topics we just discussed

How can statistical modeling of G-to-P relationships 
harness advances in genomic research? 



More multi-trait analyses are needed
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𝒀 = 𝟏𝝁 + 𝑸𝜷 + 𝑿𝜶 + 𝒁𝒖 + 𝜺

 
𝒖 ~ MVN(0,             )
K = kinship matrix
𝜺 ~  MVN(0, 𝐼𝜎!") 

Phenotype
vector

Grand mean

Fixed effects: 
account for 
population 
structure

Marker effect

Random effects: 
account for familial 
relatedness

Random error vector

Yu et al.  Nat. Genet (2006)

𝒀𝟏
𝒀𝟐..
.
𝒀𝒌

Vector of 
multiple traits

Q, X. and Z are design matrices



Multiple loci need to be considered in one model 
(MSTEP shown here)

• Determining the optimal model: 
– AIC, BIC, mBIC
– Permutation procedure

Fernandes et al., The Plant Genome (2022)

Vector of multiple 
traits Design matrix 

including multiple 
markers

Matrix of additive 
effects for each 
marker and each 
trait

Random matrix of 
residuals
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𝒀 = 𝑿𝑩 + 𝑬



Non-additive effects need to be modeled

• I is a subset of markers with additive effects in model
• U is a subset of markers with two-way epistatic effects in model 
• Determining the optimal model: 

– AIC, BIC, mBIC
– Permutation procedure

Bogdan, Ghosh, and Doerge, Genetics (2004)

Phenotype of ith 
individual

Grand Mean

Main (additive) effects 
of genomic markers

Two-way 
interaction 
(epistatic) effects 
between genomic 
markers

Random error term
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Stepwise epistatic model selection =
 Stepwise Procedure for constructing an 

Additive and Epistatic Multi-Locus model 
(SPAEML)



Contribution of non-statistically significant loci 
needs to be quantified

Turner-Hissong et al., G3 (2020)
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Each point: multi-kernel 
genomic selection (GS) model 
derived from a different 
pathway 

• Incorporating a priori pathway 
information into GS can improve 
prediction accuracy

• Indirectly tests for contributions of genes 
of smaller effect



-omic levels connecting intermediate steps between 
“G” and “P” need to be included in the model

18Rice and Lipka, Mol. Breeding (2021)



19

Null

µ!! µ"! µ""

Genotypes

Ph
en

ot
yp

ic
 V

al
ue

s

Genotypes

Ph
en

ot
yp

ic
 V

al
ue

s

Mean/Additive shift

aa Aa AA aa Aa AA

Move beyond testing for differences in 
population mean trait values

Variance Quantitative Trait Loci (vQTL)
Variance GWAS (vGWAS) 

Dr. Matthew D. 
Murphy



GxE interactions could appear as a vQTL
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Genomic position

Environment 1

Genomic position

Environment 2

Causal 
Locus 1

Effect size = 
3.25

Effect size = 
1.00

Causal 
Locus 1

Murphy et al., Heredity (2022)

Could reduce severity of multiple testing 
when finding specific GxE loci



Bioinformatic breakthroughs can assist with testing 
scientific hypothesis on genetic architecture
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Genomic position

One pleiotropic 
locus

Causal Locus

Trait 1 Trait 2

Genomic position

Two loci in 
linkage

Trait 1 Trait 2

Causal 
Locus 1

Causal 
Locus 2

Fernandes et al., Frontiers in Genetics (2021) 

Simple example: Pleiotropy versus linkage?



Bioinformatic breakthroughs can assist with testing 
scientific hypothesis on genetic architecture

22Figure created by Geoffrey P. Morris

Complex example: Evidence for omnigenic and/or other genetic architectures?


