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Project description 

1. Objectives/aims  

Applications of genomic prediction and genome-wide association (GWA) analyses in plant and 

animal agricultural species often face the problem of data sharing across multiple private and 

public institutions. This is particularly true for difficult to measure traits where several 

institutions are collecting phenotypic and genotypic data, but no single institution possess a 

dataset with enough individuals to obtain powerful GWA and accurate genomic predictions.  

Thus, there is increased interest in methods that allow data integration and sharing while 

respecting privacy and intellectual property of each individual entity. 

Several solutions have been used to circumvent the problem of data sharing in genetic studies. 

For instance, meta-analysis of GWA studies is commonly used by public-private consortia 

working on genetic epidemiology (Panagiotou et al., 2013); in this area our group has developed 

methods to perform GWA using results from multiple GBLUP genetic evaluations (Bernal Rubio 

et al., 2016). Likewise, meta-genomic-prediction has recently been proposed (Jighly et al., 2022). 

In meta-analysis each institution performs their own GWA and summary statistics from each of 

the studies are shared with a core group that performs the integration of results into a more 

powerful GWA or more accurate genomic prediction. Alternatively, monomorphic encryption 

(Blatt et al., 2020) has been used for genetic epidemiology to share data while protecting the 

privacy of each subject in the dataset, and maintaining marker-specific properties. This allows 

combining data and implementing tests of marker-phenotype association. Although these two 

approaches are promising and are already being used, there is still the need of methods that allow 

data integration without sharing data (either individual data or summary statistics) that may be 

sensitive.  

Federated learning (Konečný et al., 2015) has been used for multi-location (site) distributed 

model fitting without sharing individual-level data between sites. In federated learning, each site 

holds data and performs some steps of the model training, and statistics are shared with a central 

site or among sites for implementing other steps of the model training. The process may be 

repeated iteratively until convergence is obtained or it may be updated on-demand from each site 

in an asynchronous way. This is different from meta-analysis where information (statistics) flow 

only from the collaborating institutions to the central node or from one site to another, but there 

is no feedback once the meta-model parameters have been estimated. Moreover, in most meta-

analyses, a common (homogeneous) set of model parameter estimates is produced, while in 

federated learning, heterogeneous estimates for each site can be obtained while borrowing 

information across all institutions. Like federated learning, meta-analysis is transfer learning. 

This is a non-iterative approach to model fitting without sharing data that proceeds like a meta-

analysis (only one cycle of updates), but where site-specific model heterogeneity is performed by 

shrinking the local estimates in each site, towards the common (meta-analytic) estimates. 

Federated learning has been used in many applications, specifically for generalized mixed linear 

models applied to GWA (Chen et al., 2022; Li et al., 2022a) and analysis of medical records (Li 

et al., 2022b). Federated learning has also been proposed for genotype to phenotype prediction in 

plants (Danilevicz et al., 2022) but has not been implemented yet. 

The overarching goal of this proposal is to contribute to AG2PI through facilitating 

distributed analysis of plant and animal breeding datasets across multiple competing 



stakeholders while respecting privacy and intellectual property rights of each stakeholder. 

To accomplish this objective, we propose the following specific aims: 

1) Develop an R package to implement several algorithms of for federated learning and 

transfer learning. 

2) Evaluate the properties of the proposed methods using animal and plant datasets and 

compare to transfer learning methods and to meta analytic approaches. 

3) Develop a platform for collaborative and decentralized federated learning and transfer 

learning. 

 

For Objective 1. We will implement several variants of federated learning and transfer learning 

for genomic prediction models. We will consider two assumptions: 1) models with homogeneous 

SNP effects across sites, 2) models with heterogeneous effects across sites, but that borrow 

information from each other.  

For homogeneous effects assumption, we will implement: A) Bayesian weighted average 

procedure that relies on sharing samples of the posterior distribution of parameters. B)  federated 

models that share summary statistics across sites (e.g: matrices of cross products). 

For heterogenous effects assumptions we will implement: A) a variant of the Gauss-Seidel 

algorithm called Coordinated Descent Gradient (Wu et al., 2021), B) Transfer learning using 

residual regressions (Zhao et al., 2022), and C) Transfer learning using summary statistics. The 

basic software tool on which the proposed R package will depend will be the BGLR program 

(Pérez and de Los Campos, 2014) authored by CO-PI G. De Los Campos. 

For objective 2. We will apply the methods developed under objective one to three datasets 

described below: 

1) The dairy data will derive from the US dairy cattle feed efficiency project first funded by 

USDA-NIFA (2011-2017) and then by FFAR (2019-2024) for which the PI has been Dr. 

Vandehaar in both cases. This data has provided the basis for national genetic evaluations of 

Holstein cows for feed efficiency since 2021 It includes lactations on over 6,000 cows with over 

90% of the data coming from 5 key partners: Michigan State University, University of 

Wisconsin-Madison, Iowa State University (including data from coPI Koltes), University of 

Florida, and the Animal Genomics Improvement Laboratory.   Each lactation typically includes 

at least 6 weeks of continuously recorded daily dry matter intakes and milk yields between 50 

and 200 days in milk with weekly recording of milk components (fat, protein, and lactose) and 

body weights.   These phenotypes are used to determine residual feed intake.  Genotypes from 

78964 SNP markers are QC according to stringent CDCB guidelines.  

2) The plant data set will be from the GE project from the Genomes to Fields (G2F) initiative. 

This project has collected phenotypic data since 2014 from field trials distributed over the US 

Maize growing. The currently available data set (2014-2021) includes 77,000 phenotypic records 

from 4,916 maize hybrids with DNA genotypes derived from the genotypes of the parental 

inbred lines (~98,000 SNPs after QC by genotyping quality, minor allele frequency, and LD-

pruning). The phenotypic measures collected include: grain yield (kg/ha), moisture %, and 

flowering traits (days to anthesis, days to silking and anthesis-silking interval). The available 

data were collected in 188 trials conducted in 38 distinct evaluation sites located in the Midwest 

(n=48,333 phenotypic records), the Northeast (n14,333 records), and the South (n=13,958 

records) regions of the US. We have already QC the phenotypic and genotypic data. 

Additionally, the group led by Dr. de los Campos has generated (and validated) 761 



environmental covariates related to radiation, temperature, and water availability. These 

covariates were generated by running the APSIMx model for each trial in the data set.  The G2F 

offer multiple advantages for this project. This data set is currently being used in a prediction 

competition launched by the G2F initiative; therefore, we will have multiple benchmarks to 

compare against. 

3) The Natural Disease Challenge swine dataset is described in Cheng et al. (2020), consisting of 

extensive phenotypes and 650K SNP genotypes on over 5000 pigs from 7 private breeding 

companies and animals have been phenotyped for several growth and immune disease traits. 

These breeding companies directly compete in the market but agreed to contribute pigs and data 

to the work described in Cheng et al. (2020), on the condition that confidentiality of their data 

would be maintained in all analyses and publications. We will analyze this dataset at Iowa State 

University. This dataset represents a great example to illustrate the potential of federated learning 

in genomic prediction and GWA. First, it comes from competing companies that would not share 

data with each other under any circumstance. Second, it consists of datasets with fewer genetic 

connections between sites compared, for example, to the dairy feed efficiency dataset, third, the 

immune response phenotypes are very difficult to collect, such that no single company is able to 

have enough animals phenotyped. We will use this data to compare the performance of federated 

learning and transfer learning to those obtained from a join analysis. 

To evaluate federated learning algorithms all the described datasets can be partitioned into 

homogeneous or heterogeneous subsets and the results can be easily compared to a joint analysis 

model. Moreover, the availability of curated phenotypic and genetic data will minimize time 

spent in data preparation and will give us the opportunity to concentrate on the evaluation and 

implementation of federated and transfer learning.  

For Objective 3. We will develop a GitHub that will define principles and standards and provide 

software developed under objective 1 to enable the AG2PI community implementing federated 

and transfer learning without sharing data but sharing intermediate model-fitting quantities or 

sufficient statistics.  

The GitHub will include a template and documentation that a collaborative consortium will be 

able to fork and use to implement their own federated learning. Once a GitHub is forked the 

collaborating sites will be able to push their own “sufficient statistics” or model fitting quantities 

and pull those pushed by other groups and perform their own federated/transfer learning. This 

type of federated learning is called decentralized asynchronous learning. It is decentralized 

because there is no central server performing computations, but only a central location holding 

the sufficient statistics. It is asynchronous, because each site can decide when to perform an 

update of their model using the most up to date results and then pushing up their own results. 

Note: if a site decides stop pushing updated results, they will not be able to further update their 

own model estimates. 

  



2. Furthering the aims of the AG2PI  

This project further advances the goals of AG2PI by developing methods and tools that will be 

usable across crops and livestock production systems to implement genome-wide association and 

genomic prediction. The developed methods will allow handling and integrating disparate data 

types (collected across different sites) to produce powerful GWA and precise genomic 

predictions while not requiring data sharing. The success of the project in the short term (within 

the year of execution) will be assessed through the submission and acceptance of publications 

and delivery of the software tool (see 3) and in the longer term, the use of the generated tool will 

be monitored through citations and access to the hosting site. 

3. Expected outcomes & deliverables  

Anticipated outputs are two peer review publications: 1) methods comparison, 2) tool description 

and through the delivery of a tool for federated and transfer learning analyses of GWA through 

GitHub. Also, outputs through participating in AG2PI activities, such as a conference and 

delivering a webinar, our group will seek to engage potential users of the developed methods and 

tools. As the tool and method are used by other groups, we will offer collaboration to maintain 

and extend the tool to cover other cases beyond ridge regression and GBLUP.  

Moreover, this seed grant will provide preliminary results for NIFA proposals. To secure further 

funding, we will directly target the following programs: Animal Breeding, Genetics and 

Genomics, Data Science for Food and Agricultural Systems, and Plant Breeding for agricultural 

Production. 

The ultimate impact of the methods and tools from generated this proposal will be tested in the 

long term through assessing the adoption of these federated learning tools by competitive private 

breeding companies. To increase the likelihood of this happening, our team will disseminate our 

results in conferences with strong corporate breeding participation such as the poultry breeders 

round table and national swine improvement federation.  

4. Qualifications of the project team  

Dr. Steibel is a professor of Animal Science and J. Lush Endowed Chair of Animal Breeding and 

Genetics at Iowa State University. His area of work is quantitative and computational genetics, 

genomics and phenomics. And his research focuses in the development, adaptation and 

application of statistical and computational methods for dissecting the genetic basis of 

phenotypic variation of production and behavioral traits in livestock species and especially in 

pigs. His program has been continuously funded through contracts and grants from NIFA, 

Animal Agriculture community groups and breeders’ associations. His current and past projects 

include developing statistical methods for genomic prediction and genome-wide association, 

prediction of social genetic effects and implementation of computer vision for livestock 

phenotyping. 

Dr. James Koltes is an Assistant Professor in Animal Science at Iowa State University.  He 

provides expertise in precision dairy farming, data reuse and dairy cattle breeding and genomics. 

Dr. Koltes participates in several projects related to the acquisition, sharing and mining of big 

data in animal agriculture including the livestock QTLdb and is also the NRSP8 livestock 

bioinformatics co-coordinator.  Closely aligned to this project, Dr. Koltes is also a co-PI of the 

dairy feed efficiency project. 

Dr. Tempelman is a statistical geneticist associated with the feed efficiency consortium and has 

been primarily responsible for performing quality control and data editing in combining data 

from the various members of the consortium.  He has already spearheaded various analyses, 



including GWA, genomic prediction, multiple trait and random regression analysis with this data 

and will be responsible for forwarding sufficient statistics for the proposed project. 

Dr. Michael VandeHaar has been leading efforts in the US for the last 12 years to compile a 

database of genotypes and phenotypes related to feed efficiency of Holstein cattle.  He is 

recognized as an expert in dairy cattle nutrition and energetics; he will provide guidance on the 

use of the various phenotypes from the feed efficiency database and on potential applications of 

the project. 

Dr. de los Campos has made numerous contributions in quantitative, statistical, and 

computational genomics. He has developed models and algorithms for parametric and semi-

parametric genomic regression. With Dr. Paulino Perez, he developed and maintains BGLR–a 

very popular R-package for genomic analysis of complex traits. Additionally, he developed 

BGData–a suite of R-packages that implement methods for analysis of biobank-size data within 

the R environment. Dr. de los Campos has published extensively on genomic regression with 

heterogenous effects–a central theme in this application–including genetic-by-environment 

models, genetic-by-subpopulation, ethnic- and sex-differences (including publications co-

authored by Dr. Steibel, the PI of this application). Dr. de los Campos’ expertise in models, 

software, and genomic research aligns very well with the objectives of this proposal. 

5. Proposal timeline. 

 Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb 

Objective 1             

Objective 2             

Objective 3             

 

6. Engaging AG2P scientific communities & underrepresented groups  

We will interact with the AG2P community through participating in activities such as 

webinars/field days and conferences. We will engage underrepresented groups through recruiting 

students from those groups. The ISU interdepartmental graduate programs usually recruit 

students from diverse backgrounds, and they are afforded the chance to rotate through our 

laboratories. All students and trainees working in this project will be advised and helped to 

complete/update an individual development plan considering aspects of their professional and 

personal development.  
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